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K. F. Mitterer'and R. A. Mitchcltree rand P. A. Gnoffo _t
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Introduction

The l_aagley Aerotherniodyuaniic Upwind Relaxation Algorithm (LAURA) was originally de-

veloped by Gnoffo I to solve steady-flow problems. The desire to validate the algorithm with shock

tube experimental data 2 has lnotivated the developnmnt ol'a time-accurate version of the LAURA

code. Using the [,AURA scheme in this manuer is not the optimal approach to the solution of

unsteady flow problems, but the code is easily modified to produce time-accurate results.

The objective of this work is to develop and test the time-accurate version of LAURA. The

algorithm's modifications are discussed in the next section. Testing the solution accuracy of LAURA

is accomplished by comparing the computational results with an exact solution. For this purpose

the l)resent study is solely concerned with inviscid, perfect-gas shock tube flow. Real gas effects

will be examined in subseqlJent studies. The approach to analyzing the overall solution accuracy

of LAURA is discussed in the section entitled Parameters of the Study.

Time-Accurate Relaxation Algorithm

The governing equation ibr inviscid flow of a perfect gas may be written

ill "" J/37 ,m + f • _ d,, = o (1)
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In Eq. 1 the lirst term describes tile time rate of change of conserved quantity q in the control

volume [_ and the second term describes tile convective flux f through the cell walls; ff is the unit

vector normal to the cell walls and a is the cell wall area. The finite-volume formulation of Eq. 1

is given by

[_i-_-t_lL + _ [_+, • _t+,a,+, - _ • ,_ta, I = 0 (2/
l=i,j,k

Note in Eq. 2 that uppercase integer variables L denote computational coordinates at cell centers,

and lowercase integer varialfles 1 denote cell faces. We define gl = _ ' gt so that Eq. 2 becomes

l=i,j,k

where
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(5)

In Eqs. 4 and 5 p represents density, u, v, and w are the scalar components of velocity, E is the

total energy per unit mass, U is the normal component of velocity through the cell wall, P is the

pressure, and I! represents the total enthalpy per unit mass.

The governing relaxation equation in the LAURA 1 code for inviscid, steady flow is defined by

qn+lL = q_ + ML lrL (6)

where ML is the point-implicit Jacobian given by

rflNV Z [IAt+tlal+, + lariat] n (7')ML - 2
l=i,j,k

and r is the right-hand-side solution (residual) vector given by

rL = - [gt+,a,+, - g,a,]" (8)
I=i,j,k
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Spati',ddifferencingof the residu',dvector can be either first or second order accurate. In Eq. 7

rflNV represents the inviscid relaxation factor, The matrix IAtl is the Roe's averaged 3 Jacobian

of g with respect to q at cell wall I with absolute, limited eigenvalues as described in Ref. 1.

We employ M local relaxation steps before advancing a time step At to obtain first order

accuracy in time in the following manner.

all d

In Eq.

qn,m+l n,m
L = qL + MLIrL (9)

all (101rflNV Z [IAt+ll_t+t + ]Atla_] n'l +ML - 2
I=i,j,k

n_ol n_l

rL = - Z [ gI+ltrt+l - g/o'l]n"n qL - qL _L (11)
t=ij,k At

I0 I represeuts the identity matrix. After M local iterations, the solution is advanced to

tilnt_ step n + I by setting

qn+l,I n,M
L = qL (12)

The number of local iterations M should be large enough such that the residual error defined

by Eq. 11 above is smMler than O(Al). Extensions of this method to viscous, nonequilibrium flows

are trivial, but as yet untested.

Parameters of the Study

The parametric study is conducted to define the uncertainty and computational cost associated

with applying LAURA to unsteady flow problems. The parameters examined include Courant

number, grid resolution, relaxation sweeps, and the inviscid relaxation factor.

For the simple shock tube, Courant number defines the number of cells the shock wave prop-

agates every time step.

Mt
cn = -- (13)

_z

where, A is the velocity of tile shock wave, St is the time step, and _fx is the grid spacing. If lfx

is constant then Courant numl)er varies with _ft. The effect of the time step on a solution may
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be examined by varying the Courant number. Decreasing the time step improves accuracy at the

price of addition',d computational cost.

The grid spacing is related to tile number of cells ill tile grid.

_x - grid ez'tent
cells (14)

Increasing the number of grid cells improves tile grid resolution and solution accuracy. This im-

proved accuracy carries with it additional computation_d cost.

The number of relaxation sweeps is the number of iterations performed to "relax" tile solution

ahead one time step. With a sufficient number of rdaxation sweeps the solution converges to

time-accuracy. There is a direct trade-off between relaxation sweeps and computational cost. This

trade-off pronq_ts an investigation into tile minimum n umber of relaxation sweeps required to obtain

a time-accurate converged solution.

The inviscid relaxation factor is the only parameter to be studied with no associated trade-offin

computation',d cost. The rflNV was initially implemented in the algorithm to increase the stability

of the scheme. Two values of rflNv are examined in this study: rflNV=l.5 and rflNV = 2.0.

Indirectly, this factor controls the speed with which a solution converges.

The parametric study i_ collducted to anMyze tile capabilities of the time-accurate LAURA

code ill predicting unsteady flow solutions. The four coupled parameters are isolated to examine

the contribution of each to the overall accuracy of a LAURA solution. The study examines discrete

v',dues for each of tile parameters. The results suggest preferred values for each parameter to

efficiently achieve time-accurate solutions. These suggested values for the parameters, while not

completely optimized, are selected by examining trends in the parametric study.

Test Case and Computational Mesh

The initial conditions of tile simple shock tube test case are taken from Ref. 4. The low

pressure side of the diaphragm is initialized with standard atmospheric conditions at sea level. The

pressure ratio across the diaphragnl is 10. The density ratio is 8. Both sides have zero initial

velocity. The shock tube test case assumes inviscid, perfect gas (3' = 1.4).
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A one-dimensional computational grid extending from -0.5 m to 0.5 m with the diaphragm at

0.0 in is used ill tile calculations. Grids of 200, 400, 800, 1600 and 3200 cells are examined. All

solutions are computed at time equals 4.5 x 10-4 sec.

Results

Results shown from the parametric study systematically progress toward obtaining the best

time-accurate LAURA solution by isolating the individual parameters. The progression of the

results examines the contributions of relaxation sweeps, Courant number, inviscid relaxation fac-

tor, and grid spacing toward a time-accurate LAURA solution. The investigation begins with a

comparison between first and second order accurate spatial differencing.

Figure 1 displays the nondimensionalized density distribution, as calculated using first and

second order accurate spatial' differencing, compared to the exact solution. The Courant number

for these computational solutions is 0.t. Twenty relaxation sweeps are taken for each time step over

a computational grid of 200 cells. The second order accurate solution is computed in approximately

2600 seconds on a Sun SPARCstation. Figures 2 and 3 show the pressure and velocity distributions

for the comparison in Fig. I. The additional ac(:uracy obtained from second order differencing

legitimizes its sole use in the remaining results of this study. Trends appearing in the velocity

and pressure distributions are evident in the density distribution, notably, the dissipation existing

across the shock and the expansion head. Thus, the results of the parametric study are discussed

with regard to the density distributions of the solutions.

The effects of the number of relaxation sweeps can be isolated by holding the Courant number

constant. Figure 4 displays the solutions for a constant Courant number of 2 and relaxation sweeps

of 10, 20, and 200. In this plot the number of relaxation sweeps is seen to affect the time-accuracy

of a solution. Figure 5 examines the relaxation sweeps effect for a Courant number of 1. The only

noticeable difference between 10 and 200 relaxation sweeps occurs across the shock; the 10 and 20

relaxation sweeps solutions overlap. Figure 6 shows that for cn=0.5, 10 relaxation sweeps is enough

to obtain a time-accurate solution.

The two components of over',dl solution accuracy are time-accuracy and quality. Time-accuracy



is revealed by the calculated location of the shock, contact surface, and expansion wave compared

to the locations predicted by the azlalytic solution. The quality is tile degree of dissipation of

the solution. Examining Figs. 4, 5, and 6 reveals that tile number of relaxation sweeps affects

the time-accuracy of a solution and tile Couraat number affects the dissipation of a solution. In

Fig. 7 it is apparent that 5 relaxation sweeps is enough to obtain a converged solution for cn=0.1.

Comparing the dissipation in Fig. 7 with that of Figs. 4, 5, and 6, it is dear that decreasing the

Courant number produces solutions of less dissipation. Decreasing the Courant number any more

than 0.1, however, increases the computational cost for a negligible gain in accuracy.

If time-accuracy can be achieved for less than ,5 relaxation sweeps by varying the inviscid

relaxation factor, computational cost will be cut. Figures 8 and 9 display the effects of rflNV on

the solution accuracy. In Fig. 8 the rflNV is lowered fi'om 2.0 to 1.5 for the 2 relaxation sweeps

case. It appears that lowering the rftNv to 1.5 helps converge a solution that is not time-accurate.

Vigure 9 shows instability at the expansion tail caused by rfiNv=l.5 for a Courant number of 2.

This instability might be removed by updating the Jacobian of Eq. 7 more often than once per time

step. The study also reve',ded, however, that a solution with rfiNv=2.0 may actually converge to

time-accuracy before a solution with rflNv=l.5 regardless of Courant number.

TILe results thus far have used a computational grid of 200 cells. The highest quality LAURA

solution is the case with on=0.1, rflNv=2.0, and 5 relaxation sweeps. The remainder of the study

will examine the effect of increasing the grid resolution.

Figure 10 compares the 200, 400, and 800 grid cells solutions. It is apparent that increasing

the grid resolution improves the quality of the solution. The price of this increased quality is

computational cost. TILe solution for 800 cells is computed in 41000 sec. Figure 11 reveals that

increasing the number of grid cells to 3200 produces a better approximation of the exact solution.

At this scale there is little noticeable difference between the 800 grid cells solution and the 3200

grid cells solution. Figure 12 displays in detail the shock and contact surface shown in Fig. 11.

Increasing the number of grid (:ells significantly adds to the computational cost of the solutions.

At increased grid resolutiot_, it wouhl be advantageous if an accurate solution could be found for less



than5 relaxation sweeps. Figure 13 shows that across the shock a noticeable difference exists for the

2 and 5 relaxation sweeps solutions. This result points out that while increasing the grid resolution

significantly decreases the dissipation there is a less pronounced effect on the time-accuracy of a

LAURA solution.

Conclusions

This parametric study of a time-accurate version of LAURA applied to inviscid, perfect-gas

shock tube flow is all investigation into the trade-offs between overall solution accuracy and com-

putationM cost. The results of the study lead to some interesting conclusions concerning the effect

of the parameters, the best LAURA solution, and con_putational cost of the solutions.

The four parameters examined are Courant number, relaxation sweeps, inviscid relaxation

factor, and grid spacing. The parametric study indicates that these coupled parameters have, in

fact, isolated effects on the solutions. The Courant number and grid spacing significantly affect

the dissipation of the solution, whil(: the number of relaxation sweeps and the inviscid relaxation

factor affect the time-accuracy of the solutiou. As would be expected, second order accurate spatial

differencing results in higher resolution quality tha_l first order accurate spatial differencing.

Finding the best time:accurate LAURA solution was a primary goal of this study. The best

solution is defined as the solution with the highest degree of accuracy for the least computational

cost. For a grid of 200 cells, the best solution is cn=0.1 with 5 relaxation sweeps. The results of

the study indicate that LAURA is capable of producing extremely accurate solutions by increasing

the number of grid cells. This stu(ly was limited to the maximum of 3200 grid cells in consideration

of excessive computational time. It appears that by increasing the number of grid cells the quality

of the solution will continue to improve.

The price of highly resolved solutions is considerable computational cost. The solution of the

cn=0.1, 5 rela_xation sweeps, and 200 grid ceils case is computed in about 43 minutes. Increasing

the grid to 800 cells, while holding Courant number and number of relaxation sweeps constant,

increases the computational time by a factor of 16.
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